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Abstract .  W e  have used transla matrix tehniques to study a model of polymer 
adsorption and collapse. W e  consida the conventional model of a self-avoiding walk 

adsorbing boundaries. The numerical results are  consistent with the existence of a 
multicritical point where the adsorption and collapse transitions coincide and suggest 
that the adsorption transition of a collapsed polymer chain is firai order. There is 
also dear evidence that the collapee transition lowers the adsorption temperature. 
Estimates of the surface scaling dimensions a t  the ordinary-@ transition support the 
conjecture of Scno and Stella that the surface critical behaviour aL1 the B and 0' 
points belong to different universality classes. 
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1. Introduction 

The mathematical modelling of polymer conformations in the presence of adsorbing 
substrates is a topic of great practical interest in the applied sciences (see, e.g., [l]). 
The problem acquires added importance when the polymer molecule presents the 
possibility of a collapse (coil-globule, protein folding) transition when dissolved in a 
bulk solvent; the situation with an adsorbing substrate then becomes relevant to both 
colloidal stabilization by biopolymers [2] and membrane biophysics [3]. At the same 
time, these problems (taken separately) have attracted a good deal of attention in 
statistical mechanics [4-61. 

With the advent of conformal-invariance techniques [7], the critical exponent struc- 
ture of two-dimensional polymer models has become an area of active research. Recent 
reviews by Duplantier (for example, [E]) contain exacl expressions for the exponents 
describing the surface adsorption and hulk collapse of polymers in two dimensions. 
However, there is a less complete understanding of models with competing monomer- 
surface and monome-monomer interactions where the collapse and adsorption tran- 
sitions may occur simuitaneousiy. The new C i a S  of modeis are interesting not only 
for the possible changes in the universality class(es) but also for the structure of the 
ensuing phase diagram. 

Bouchaud and lrannimenus [9] have looked at  an exactly solvable interacting ran- 
dom walk model of a polymer embedded in a three-dimensional fractal lattice and 
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adsorbing at  an attractive lattice surface. Beside the expected adsorption transition, 
a collapse transition is seen to occur for the adsorbed random walk. The present au- 
thors [lo] have also presented an account of a large-size transfer matrix study of the 
phase diagram of a directed interacting random walk on a square lattice adsorbing to 
an edge. In both of these studies, the phase diagram includes the interesting feature 
of a first-order adsorption phase transition for the collapsed chain, a t  least within a 
range of parameter values. 

In this paper, we present a transfer matrix study of an isotropic self-avoiding walk 
model with nearest-neighbour interactions on a square lattice. We extend Saleur’s 
earlier treatment of the collapse transition in the bulk [ll] by introducing attractive 
interactions at the edges of the strip. Following a careful analysis of the adsorption 
transition in the absence of nearest-neighbour interactions (which complements the 
recent work of Guim and Burkhardt [12]), we report the results of a study of the 
model when both adsorption and collapse transitions may occur. Our results are 
consistent with the existence of a multicritical point where adsorption and collapse 
coexist, thus corroborating the small-cell renormalization results of a parallel study 
for a related geometrical model of polymer collapse near interfaces [13]. We believe 
that the concomitance of these results suggests a richness of behaviour in a realistic 
model of protein folding at  interfaces and hope that our efforts may stimulate further 
more precise studies, perhaps using Monte Carlo or conformal invariance techniques. 
We also calculated the surface exponents for the ordinary collapse transition. Our 
results appear to support the controversial results of a recent Monte Carlo study by 
Seno and Stella [14]. 

The remainder of the article is organized as follows. In the next section we in- 
troduce the model and define the transfer matrix. Section 3 reviews the adsorption 
transition for a polymer chain without monomer-monomer interactions. Exponent 
values are calculated and compared with those obtained by Guim and Burkhardt [12] 
by a similar technique. The phase diagram and order parameter for the transition 
are also discussed. Having established our approach, section 4 contains a study of the 
model with nearest-neighbour attractive interactions between monomers included. Re- 
sults for the collapse and adsorption transitions are presented, giving evidence for the 
existence of a multicritical point in the parameter space where the adsorption and 
collapse transitions coincide. In section 5 we report results for the surface exponents 
at the ordinary collapse transition. Finally, section 6 contains our conclusions. 

2. The transfer matrix 

We consider self-avoiding walks (SAW) on a strip of width L with fixed boundary 
conditions, as shown in figure l(a).  Monomer-monomer interactions are introduced in 
the standard way by assigning an energy, -cB, to each pair of nearest-neighbour sites 
visited by the walks (excluding consecutive sites in the same walk) and the attraction 
of the surface is modelled by an energy, -cs, for each step along either edge of the 
strip. The generating function of the model can be written as 

. 

2, = C I < ~ Q ~ s P ~ ~  (1) 
walks 

where I< is the monomer fugacity, Q = exp (cS/kBT), P = exp (cB/kBT), N counts 
the total number of steps in the walks, Ns  the number of steps a t  the surface and N B  
the number of nearest-neighbour interactions (see figure l (a ) ) .  
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Figure 1. (a) A self-avoiding walk on a strip of width L = 6. Monomer-monomer 
interactions are represented by dots between lattice sites visited hy the walk, [e .  4. 
The walk shown has N = 33 steps, with Ns = 4 at the surface and there me NB = 15 
nearest-neighbour interactions. The end-twnd distance measured along the strip, 
R. equals 5.  ( b )  The self-avoiding walk decomposed into a sequence of columns. 

To calculate 2, we write equation (1) in terms of a transfer matrix, T, [15]. The 
first step is to divide all SAW configurations on a strip into a sequence of columns: 
figure l (b)  shows the decomposition of the walk in figure l(a). The set of allowed 
column states then forms a basis for the transfer matrix. Transfer matrix elements, 
Ti , ,  are labelled by the states of consecutive columns, j and k, and are defined as 

T.  i k  - - r p , . ~ ” I : p ~ : :  (2) 

T.  i k  =O. (3) 

if j and k may be connected to form a section of a SAW, or else 

Nik, 
between the centres of columns j and k. 

written in terms of the transfer matrix as 

and N$ are the numbers of steps, surface steps and interactions, respectively, 

The partition function for walks with ends in the zeroth and Rth columns can be 

2L,R = d T R u  (4) 

where U and U are vectors which depend on the initial and final positions of the walks 
and R is the end-to-end distance measured along the strip (figure l(a)). Summing 
over all R gives the generating function 
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As R -+ CO, the expression for 2,,R (equation (4)) is dominated by the largest eigen- 
value of the transfer matrix, A,, and the partition function is given by [15] 

2 , , R - ( A , ) R  as R-CO. (6) 

Hence, the generating function 2, diverges as A, i 1-. The singularity in 2, is 
due to the divergence of the average length of the SAW, (N),, and defines the critical 
fugacity, Kc,,, for a strip of width L [ll]: 

AI. [KJ  (p,&)I = 1. (7) 

‘Thermodynamic’ properties of very long polymers on strips follow from the parti- 
tion function 2,,R in the limits R -+ CO and ( N ) ,  i CO. From the relations above, one 
deduces the following expressions for thermodynamic quantities, where the derivatives 
are evaluated at the points where A, = 1: 

An approximation to the true thermodynamic limit, L i CO, is reached by extrapo- 
lating finite-size data. 

We have considered the cases of one or two SAW on the strip. The largest eigenval- 
ues, A i ,  of the resulting transfer matrices, Tk, determine characteristic lengths along 
the strip 

where i is the number of SAW. Because the problem of SAW on a lattice is equivalent 
to the O(n) model in the limit n + 0 [16], the lengths <y can be identified with the 
spin-spin ( i  = 1) and energy-energy (i = 2) correlation lengths of a magnetic model. 
As I; -+ Kc, , ,  both the correlation lengths and the average length of the SAW diverge. 

At a critical point of the O(n) model on a semi-infinite lattice, the correlation 
lengths of both bulk and surface quantities diverge and the statistical properties of 
the system are conformally invariant, In two dimensions, the semi-infinite system at  
criticality may he transformed to an infinitely long strip by a conformal mapping. 
Spin-spin (i = 1) and energy-energy (i = 2) correlations decay exponentially in the 
new geometry with 

where zi are the surface scaling dimensions of the spin (i = 1) and energy (i = 2) 
operators [17]. Hence, the surface scaling dimensions of the O(n) model in the limit 
n i 0 may be calculated from the transfer matrices for SAW [18]. 
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3. The adsorption transition 

We begin by considering polymer adsorption in the good solvent regime, where 
monomer-monomer interactions may he neglected. At a characteristic temperature, 
TA, the average number of monomers adsorbed a t  the surface, ( N , ) ,  becomes macro- 
scopic 

( N s )  - ( N P S  as (N)-+m (13) ~ 

which defines the surface crossover exponent, &. Below TA, a finite fraction of 
monomers in a polymer chain are adsorbed and polymers are hound to the surface. 
Above TA, ( N , )  remains finite as ( N )  + 00. 

The critical properties of the polymer phases are described by three fixed-points, 
which all have analogues in the O(n) model in the limit n -+ 0 [19,20]: (i) the ordinary 
fixed-point, ( K c ,  QZ"), governs the behaviour of the unbound phase, where surface 
interactions are irrelevant (in the RG sense); (ii) the special fixed-point, (ICc,Qzp), 
describes the adsorption transition, with Q,"P = exp ( E ~ / ~ , T , ) ;  and (iii) the surface 
fixed-point, (Q -+ m), governs the bound phase. 

The critical fugacity at  the ordinary and special fixed-points, Kc,  is equal to the 
&dimensional bulk value. In the bound phase, Q > QSp, the critical fugacity is a 
function of Q; near the adsorption transition [20] 

IC, (Q) - I(, - IQ - Q2p11"s as Q-QSP-O+ (14) 

while for large Q 

K,.(Q)-Q-' as & + C O .  (15) 

The crossover in the polymer's critical behaviour at  the adsorption transition can 
be associated with the divergence of the average distance a polymer extends from the 
surface into the bulk, 5'. In the bound phase, [I defines the average thickness of the 
adsorbed layer a t  the surface. At the adsorption transition, [I diverges 

,$l I Q  - QSPI-"' as Q - Q S p - + O c  (16) 

which defines the surface exponent vs. In the unbound phase, Q < Q P ,  [I diverges 
like the bulk correlation length 

[I - IK - K J "  as I< - IC, - 0- (17) 

where U is the standard bulk exponent. The surface crossover exponent, &, is given 
by the ratio of the bulk and surface exponents [20] 

4s = U/% (18) 

For a strip of width L, the lengths [k i  defined in  the last section obey the finite-size 
scaling form [21] 
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as ( K ,  Q )  -+ (ICc, Q,) at the ordinary and special fixed-points. F' are scaling functions 
and the exponents y = U-' and ys = us'. From conformal invariance (relation (12)) 
we have 

A R Veal et a1 

(20) 
' -1  F' (0,O) = (m;) . 

The scaling dimensions, zk ,  are related to standard surface critical exponents by 
scaling relations [20]: 

'111 = 2 4  2Yl = Y + U (2 - q )  711 = (1 - q )  (21) 

and 

(22) 2 ys = 1 - ZS #Is = uys. 

The exact values of all the exponents at  the ordinary and special fixed-points in 
two dimensions have been determined by Duplantier and Saleur from Coulomb gas 
mappings and conformal-invariance results (and references therein [SI). The same 
exponents have also been obtained by Burkhardt, Eisenriegler and Guim from a cal- 
culation of the energy-energy correlation function of the semi-infinite O(n) model [22]. 
Also, Kc is known to high accuracy for the square lattice from the series expansions 
of Guttmann and Enting 1231: 

K ,  = 0.37905228~0.00000014.  (23) 

Hence, this section should primarily be considered as an introduction to the methods 
we shall use to study the SAW model when monomer-monomer interactions are in- 
cluded. The absence of nearest-neighbour interactions (eB = 0 in this section) allows 
us to use a simpler set of configurations as a basis for the transfer matrix [15] and 
hence results for larger strip widths can be presented. 

We have used phenomenological renormalization group methods [21,24] to de- 
termine the ordinary and special fixed-points. Recurrence relations for the coupling 
constants are defined by relating correlation lengths on strips of successive widths. 
Estimates of the critical couplings are then obtained from the fixed-points, K* and 
Q*. The results improve as larger strip widths are used. 

Finite-size estimates of the critical line above the adsorption transiton, IC2 (Q), 
ioiiow irom the soiutions of the two-strip renormaiization equations 

L-'[kl [ K i  (Q)] = ( L  - l)-' [k!l [IC; (&)I .  (24) 

Figure Z(Q) shows K; (Q) and figure 2 ( 6 )  shows the correlation length amplitude along 
the critical line, A i  (Q), defined by 

One can clearly identify the ordinary and special fixed-points from the crossing points 
of the curves. 
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Figure 2. Finite-sizeestimatesof (a) thecriticalline, Ki (Q) ,  and ( b )  thecarrelation 
length amplitude along the critical line, A i  (Q), obtained by tw-strip renormalis- 
tion. The location of the ordinary and special fixed-points can he identified from the 
crossing points of either graph. 

Table 1. Fixed-point couplings and critical exponents obtained from the D ~ P S A W  
transfer matrix using equations (26) and (27). 

v i  
L L KZ QE YL YS 

Ordinary 5 0.3793930 0.7212606 1.3337 -1.0998 1.237315 
fixed-point 6 0.3791943 0.7171025 1.3339 -1.0558 1.242670 

7 0.3791222 0.7146268 1.3339 -1.0359 1.245223 
8 0.3790913 0.7130392 1.3338 -1.0252 1.246592 
9 0.3790764 0.7119533 1.3337 -1.0186 1.247397 

10 0.3790683 0.711 1675 1.3336 -1.0144 1.247909 

Snorial 5 0.37~nf i3~ 2.~6311fi  ?.3!g 0.65320 -o;ngo.!o9? 
fixed-point 6 0.3787182 2.047802 1.3285 0.68088 -0.08252107 

7 0.3789424 2.041773 1.3330 0.68840 -0.07887168 
8 0.3790299 2.039134 1.3354 0.691 70 -0.07707104 
9 0.3790667 2.037908 1.3367 0.69304 -0.07614560 

10 0.3790824 2.037339 1.3376 0.69340 -0.07567694 

Finite-size estimates for the critical couplings a t  the ordinary and special tran- 
sitions are given by the fixed-points, (ICE, QL), of the three-strip renormalization 
equations 

(26) 
-1 11.1 L- ti I' ( K* LI Q* L ) = (L - l)-' <k!l (KZ, QL) = (L - 2) FL-2 (G, Qz) . 

The exponents y and vs are obtained by linearizing around the fixed-point [25]. In  
addition, we have 

2L L -  "' - n$(K;,QL) '  

Results for the fixed-points and critical exponents are shown in table 1 
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The finite-size data  in table 1 were extrapolated by assuming an eflective power 
law convergence [26] 

I<; - IC, - L-" as L + m .  (28) 

The exponent U is calculated from three consecutjve finitesize estimates; each triplet 
(K::,, K;, then determines a new value K2 in the L i m limit [27]. Results 
for K;, Qi, c[ and are s'hown in tabie 2. The new sequence of estimates are 
weakly dependent on L and our final estimates of the L + m limits were obtained by 
plotting the original and extrapolated sequences against L-', where C was an  integer 
value which gave a smooth convergence. The L + M limits, with our estimated 
error bars for the last digit shown, are given in table 2 together with the exact values 
of the surface exponents. The error quoted is an estimate of the uncertainty in the 
eztrapoiation of the finite-size sequences and does not take account oi the systemaiic 
errors in the original sequences. 

Table 2. Extrapolated values obtained from the linitasize estimate5 in table 1. as 
described in the text. The new sequence of estimates are weakly dependent on L. 
The table gives our final estimates of the L - m Limit. 

Ordinary 
fixed-point 

Special 
fixed-point 

6 
7 
8 
9 

m 

Exact 

6 
7 
8 
9 

m 

Exact 

0.3790596 
0.3790574 
0.3790567 
0.3790547 

0.379052 
*0.000002 

0.379120 
0.379111 
0.379104 
0.379098 

0.37908 
i0.00002 

0.70806 
0.70809 
0.70791 
0.70761 

0.i075 
i0.0005 

2.0357 
2.0361 
2.0364 
2.0367 

2.037 
io.001 

- 1.0099 
-1.0053 
-1.0033 
-1.0023 

. ̂̂ ^ - I .""U 
fO.OO1 

-1 

0.6971 
0.6955 
0.6943 
0.6936 

0.694 
io.001 

213 

1.24896 
1.24905 
1.249 15 
1.24926 

i.2495 
iO.WO5 

514 

-0.07400 
-0.07442 
-0.074 73 
-0.07501 

-0.0755 
&0.0005 

-1112 

For the ordinary fixed-point, the sequences of finite-size estimates in table 1 con- 
verge in a regular way towards the expected values and even small strips give rather 
accurate numerical results. The extrapolated values in table 2 are in excellent agree- 
ment with exact results and the estimate of I(, compares well with the series result 

For the speciai fixed-point, where ihere are iwo reievani parameters, the situation 
is less clear. The finite-size sequences in table 1 converge monotonically, but the 
exact values of the exponents lie between the numerical results for L = 5 and L = 10; 
hence, our extrapolations must contain systematic errors in this case. For larger strips 
(L > 10) we would expect the finite-size sequences to converge towards the values 
for the semi-infinite system. However, the finite-size estimates show an accuracy 

(23). 
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Figure 3. Finitesize estimates of (a) the critical line, Kc,' (Q),  and (6) the fraction 
of adsorbed monomers at criticality, ( A ' s ) ~  /(A')', for one SAW on a strip. The 
critical lines in (a) cross close to the adsorption multicritical point and show a rapid 
convergence with increasing L within the adsorbed phase. 

comparable with other phenomenological renormalization calculations at  multicritical 
points and our estimate of the adsorption threshold, Q S P  = 2.037 2~ 0.001, is in good 
agreement with other calculations [12]. 

Our findings are in excellent agreement with those of Guim and Burkhardt [12], 
who have presented a related approach to the problem. They studied the fixed-point 
structure via the twdength,  two-strip renormalization relations 

(29) L-'$''(KZ,Q2) = ( L  - 1)- 1 t L - l  lid (IC:, Q2) 
L-'<!)*(KZ,Q*L) = ( L -  l ) - ' ( ! ) ~ l ( I ( Z , Q ~ ) .  (30) 

This has the advantage of giving both surface scaling dimensions of interest directly 
from correlation length amplitudes. Guim and Burkhardt also observed irregular con- 
vergence of their finite-size data a t  the special fixed-point. Our three-strip calculations 
appear to be more accurate a t  the ordinary fixed-point. We shall employ both two- 
parameter renormalization methods for the study of the model when nearest-neighbour 
interactions are included. 

A third approach which has proved useful is to study the critical properties of a 
polymer confined to a strip. From section 2, the finite-size critical fugacity is defined 
by 

X L  [ I {< ,L (Q)I = 1 (31) 
while the derivatives of X L  at  I<c,L define thermodynamic quantities for long polymers 
(E), (9). Figure 3(a) shows the critical line, I<+ ( Q ) ,  and figure 3 ( b )  shows the fraction 
of adsorbed monomers a t  criticality, ( N s ) L  / for the case of one SAW. The results 
are a good approximation for the properties in the bound phase, where the polymer 
only extends a finite distance into the bulk as ( N )  -+ m. In fact, for Q >> Q,"" the 
dependence on L is expected to he exponential and the curves very quickly approach 
their asymptotic values. As the adsorption transition is approached, Q - Q? -+ O+, 
finite-size effects appear as the adsorption layer's thickness, CL, becomes comparable 
with the strip width, L. 
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The critical lines, Kc,L (Q), cross close to the adsorption multicritical point and 
the crossing points are expected to converge to (K,,Q:p) as L - 00 [lo]. Finite-size 
estimates, (Kc ,L ,  Qc,L), were obtained from the intersection points for successive strip 
widths, i.e. from the solutions of the equation 

X i  (Icc,L3Qc,L) = Xi-1 (Icc,L,Qc,L) = 1. (32) 

The results, together with extrapolated values (kC,,,a,,,), are shown in table 3. 
Although the numerical results for small strips are not particularly accurate, the 
sequence of estimates converge regularly to give reliable extrapolated values. Our 
final estimates, K,  = 0.3790 k 0.0002 and Q S P  = 2.04 f 0.02, are consistent with the 
results from phenomenological renormalization. 

Table 3. Finite-size estimates of the multicritical adsorption point, ( K c , ~ , Q c , ~ ) ,  
obtained from equation (32). together with extrapolated valuen, (~<,L,G~,L). Final 
estimates of ( K ~ , Q ~ P )  are a l ~ o  given. 

4 0.3869673 
5 0.3844798 0.38001 
6 0.3831236 0.37963 
7 0.3822775 0.37942 
8 0,3817027 0.37930 
9 0.3812886 0.37923 

10 0.3809773 

0.3790 
f0.0002 w 

1.876449 
1.903069 1.9971 
1.920397 2,0099 
1.932836 2.0186 
1.942330 2.0243 
1.949883 2.0284 
1.956076 

2.04 
f0.02 

The fraction of adsorbed monomers a t  criticality is an order parameter for the 
adsorption transition. In the weakly adsorbed phase, Q 2 QSP, we have the important 
relation [19] 

On a finite strip 

6 - o L w L - (  as L - , O ~  at  Q; (34) 
L -  ( N ) ,  

where C = y ( 1  - qL.) and Q i  is a finite-size estimate of QSp. Thus, 0," is a solution 
of the three-strip equation 

which also defines a finite-size estimate of the exponent C, C L .  The results, together 
with the extrapolated values a i  and TL,  are shown in table 4. Problems with the data  
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Table 4. Finitesize estimates of Qf and C L  obtained from (35), together with 
extrapolated values andTL. Final estimates of Q A  = QS’ and C = y(1 - 9s)  are 
shown and the exact d u e  of the exponent is given. 

- 
L Q;’ 6;’ CL CL 

5 1.988757 0.706 10 
6 2,020579 2.0505 0.68020 0.6486 
7 2.034284 2.04% 0.66765 0.6513 
8 2.040567 2.0472 0.661 28 0.6530 
9 2.043525 2.0464 0.65801 0.6542 

10 2.044882 0.65639 

m 2.046 
fO.OO1 

0.655 
*0.001 

Exact 213 

I a; 

I 
0 2.0 L.0 6.0 8.0 

L.9 10-b 

Figure 4. Extrapolated estimate. G ~ , B , , L  and G;’ from tables 2, 3 and 4 plotted 
against L-‘, Extrapolating the curves gives a hal  estimate QS‘ = 2.042 -t 0.005. 

are the same those observed with the phenomenological renormalization calculations 
at  the special fixed-point. Our final estimate, Q S P  = 2.046 f 0.001, is consistent with 
our earlier results. 

Finally, figure 4 shows the extrapolated estimates e,&, and 8,” from tables 2, 
3 and 4 plotted against L-4. Extrapolating the curves gives upper and lower bounds 
for the value of Q 2 P .  Our final result, @P = 2.042 f 0.005, is in excellent agreement 
with Guim and Burkhardt’s final estimate of Q S P  = 2.041 + 0.002. 

4. Adsorption with collapse 

In this section we introduce the effects of solvent-induced monomer-monomer interac- 
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tions. A polymer now exhibits a collapse transition in the bulk solvent at a characteris- 
tic temperature, 0, [16]. Above 0, the excluded-volume repulsion between monomers 
dominates and the polymer has the statistics of a self-avoiding random walk; this is 
the good solvent regime. Below 0, attractive interactions dominate and the polymer 
adopts a compact conformation. Precisely at the 0 point, the polymer has a well 
defined conformation intermediate between the random and collapsed phases. The 
universal properties of a polymer at the 0 point are described by the tricn’tical point 
of the O(n) model in the limit n + 0 [28,29]. 

In the presence of a substrate with sufficiently attractive monomer-surface inter- 
actions, a polymer at  the 0 point has an adsorption transition. This occurs at a 
multicritical point, (I<P,’P, PFss!’, Q ~ B ~ P ) ,  in the parameter space where the adsorp- 
tion and collapse transitions coincide [30]. 

Figure 5 shows the critical surface, I( = I ( , (P,Q),  projected onto the (P ,Q)  
piane for a twwdimensionai poiymer. The diagram is semi-quantitative: the positions 
of the phase boundaries can be obtained approximately from the data presented later 
in this section. The multicritical point, marked M in figure 5 ,  is at  the point of 
intersection of the phase boundaries and separates the adsorption transitions of the 
ordinary and collapsed SAW phases. As the monomer-monomer interaction parameter 
P increases, the adsorption transition changes from second to first order a t  a point 
T. We expect the points M and T to coincide, as is the case for the exactly solved 
model of Bouchaud and Vannimenus 191 and also for the directed model [lo]. However, 
one cannot rule out the possibility that T is a tricritical point quite distinct from M 
occurring on the boundary between the surface SAW and collapsed SAW phases a t ,  say, 
PT 2 2, QT 2 3.5 (see figure 5 ) .  In two dimensions, one expects only one surface SAW 
phase, because a collapse transition cannot occur in one dimension. Hence, the 0 line 
separating the ordinary and coiiapsed phases terminates a t  the muiticriticai point M .  

( 1 4  6p 
Collapsed 

2 
OrdinOry 

0 
0 1 2 3 

P 

Figure 5.  The critical surface, h’ = h; (P,Q), projected onto the (P,Q) plane 
fora twodimensional polymer. P = e x p ( r s / k ~ T )  and Q = exp(es /k~T)  are the 
Boltzmann factors for the monomer-monomer and monomer-surface interactions, 
respectively. The multicriticd point, M, is at the point of intersection of the phase 
boundaries and separates the adsorption transitions of the ordinary and collapsed 
SAW phases. As P increases, the adsorption transition changes from second to first 
order at a point T. We expect the points M and T to coincide [9, IO], but it is possible 
that T is a tricritical point quite distina from M occurring on the boundary between 
the surface SAW and collapsed SAW phases. 

The phase boundaries in figure 5 were obtained by studying the critical properties 
of SAW on strips. There are, however, serious technical difficulties with transfer matrix 
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calculations at  the 0 point. Finite-size data  show [ll] (i) parity effects-results for 
odd/even width strips converge in a different way; (ii) poor convergence-estimates 
converge slowly with increasing size and i t  is only possible to study narrow strips 
because of the size of the transfer matrices involved; and (iii) boundary effects-dense 
polymers are particularly sensitive to boundary conditions [31] and this distorts the 
finite-size scaling behaviour near the 0 point and in the collapsed phase. 

Thus, although we have found convincing evidence for the phase boundaries shown 
in figure 5,  we were not able to obtain very precise estimates from our calculations. 

Our hest results were obtained by studying the finitesize critical properties of a 
single SAW. Recall from section 2 that the finite-size critical fugacity is defined by 

with the derivatives of X i  at  defining the thermodynamic quantities of interest 
(8)-(10). On a finite strip, the ratio (NB)L/(N)L will not tend to unity as P + 00; 

as the SAW fills all the available sites on the strip 

We consider first the change in the position of the adsorption transition as a 
function of the'monomer-monomer interaction strength, P. Figures 6 and 7 show 
the variation in the critical line, I<c,L ( Q ) ,  and the order parameter, / ( I V ) ~ ,  for 
strips of width L = 4 to 7 for different values of P .  For small values of P, the variation 
of the order parameter with Q suggests that the adsorption transition is second order, 
whereas for larger P there is strong numerical evidence that  the transition is first 
order. For small P ,  the position of the transition is well approximated by the crossing 
points of the curves in figure 6, as was the case for no monomer-monomer interactions 
(see section 3). However, for larger P ,  the transition more closely corresponds to the 
shoulder in the Kc,L (Q) curves, where the gradient appears to change discontinuously. 
Note that,  in the adsorbed phase (where one expects an exponential dependence of 
I<c,L - I(, on L )  convergence to the L -+ a3 limit is very quick. The position of the 
adsorption phase boundary in figure 5 was estimated, for small P ,  from the crossing- 
points (32) and, for large P ,  from the position of the shoulder in the h'c,L (&) curves. 
Because only small strip widths can he generated, the estimates are not very precise. 

Further evidence for the existence of the multicritical collapseadsorption point is 
provided by following the dependence of the collapse transition on the surface inter- 
action parameter, Q .  Figures 8 and Y show the variation in the criticai iine, .i<c,L [ P ) ,  
and the collapse order parameter, (NB)L / for strips of width L = 4 to 7 for 
different values of Q .  For small values of Q, the variation of the order parameter 
with P is smooth as the tricritical 0 line is crossed. However, for larger Q ,  there 
is again strong numerical evidence for a first-order unbinding transition between the 
surface and collapsed SAW phases. For large Q,  the position of the transition is well 
approximated by the shouider in the Kc,L (Pj curves, where the gradient appears to 
jump discontinously (figure 8). The positions of the shoulder in the ( P )  curves 
give further estimates of the position of the adsorption/unbinding phase boundary in 
figure 5.  In the adsorbed phase, the finite-size results again converge very quickly. 

For completeness, we report our attempt to locate the phase boundaries in fig- 
ure 5 using the analysis of Gnim and Burkhardt [12] (discussed in section 3) but with 
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Figure 6. Finitesize estimates of the critical line,  kc,^ (Q),  for strips of width L = 
4, 5 . 6  and 7 at diffment values of P .  

nearest-neighbour interactions included. Estimates of the coordinates of the adsorp- 
tion line, K i  ( P )  and Q i  ( P ) ,  follow from solutions of the equations 

(38) 

(39) 

Note that other solutions of the same set of equations yield estimates of the coordinates 
of the 0 line. 

Figure 10 shows 6); ( P )  for 0.5 < P < 2.5. The SpeCial-SAW fixed-point discussed 
in section 3 is clearly seen, but, as P increases, finite-size effects become pronounced. 
For P >  1.6, the data  for strips of odd parity begin to  cross over from the adsorption 
to the 0 line (cf figure 5 ) .  However, the crossover behaviour in the vicinity of the 
multicritical point, (0, Sp ), is very complicated and our finite-size results are distorted 
by strong boundary and parity effects. Thus, we cannot give reliable estimates of the 
iocation oi the muiticriticai point. 

Figures 6-10 provide evidence for the general shape of the phase diagram in figure 5 
and also the approximate position of the phase boundaries in the parameter space of 
the model. There is also rather strong numerical evidence that the transition between 
the surface and collapsed self-avoiding walk phases is first-order for large values of P. 
However, we cannot give the precise location of the multicritical point M or define 

1 I l l  K* p 1 I l l  

1 112 K* p 1 1 1 2  

L- Ci [ L ( ) ,  0; (PI1 = ( L  - 2)- E i - 2  [Ki ( P ) ,  Q*, (P)l 

L- €L' [ L ( ) , 0; (PI1 = ( L  - 2)- FL-2 [IC ( P I ,  02. (P)l. 
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L! 0 2 4 6 8 1 0  

Figure 7. The fraction of adsorbed steps at the critical fugacity, ( N s ) ~  / ( N ) L ,  for 
strips of width L = 4 ,  5, 6 and 7 at different values of P .  For small values of P ,  the 
variation with Q is continuous, while for larger P the results suggest a discontinuous 
change at the adsorption transition in the thermodynamic limit. 

definitively whether it coincides with the point T where the order of the adsorption 
transition changes. 

Physically, a very important question is whether or not the collapse transition 
is modified by the presence of an adsorbing substrate. At the multicritical collapse- 
adsorption point, M, the average number of monomers adsorbed a t  the surface becomes 
macroscopic and the polymer chain is a t  the 0 point. In a very small region of the 
phase diagram near M the collapse transition temperature, 0, may be shifted due 
to precursor ‘bulk’ (meaning relevat  to the whole polymer chain) effects induced by 
the surface potential. This is in marked contrast t o  the case of the related magnetic 
system, wheIe the modified surface exchange bonds cannot shift the bulk tricritical 
temperature. A recent study of a related model of polymer collapse by Cattarinussi 
and Jug [13] suggests that the 0 temperature is enhanced a t  the multicritical collapse- 
adsorption point in both two and three dimensions. This enhancement appears to be 
much greater than the shift induced by finite-size effects, which thus  cannot be easily 
invoked to  explain the results. It has been argued that a shift in 0 is expected because 
the reduction of the conformational entropy of the random self-avoiding walk phase 
in the presence of a surface greatly exceeds that of the collapsed phase [32]. If this 
is the case, we would expect the critical value P, = exp(EB/kBO) to be lower a t  
the multicritical point, M, than a t  the bulk collapse transition. However, our results 
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P 

Figure 8. Finitesize estimates of the critical line, Kc,,, (P), for strips of width L = 
4, 5, 6 and 7 at different values of Q .  

(figure 10 in particular) are not precise enough to confirm this shift. 
Another interesting question is whether or not there is a shift in the adsorption 

temperature, TA, due t o  monomer-monomer interactions in the bulk. From figures 6- 
10, there is clear evidence that the critical value Q S p  = exp(cs/kBTa) increases as P 
increases, as shown schematically in figure 5. Hence, the adsorption temperature is 
lowered by the effects of attractive solvent-induced interactions in the bulk. 

5 .  The ordinary-@ point 

We now investigate the extent to which strip calculations can elucidate the fixed-point 
structure in the parameter space of the model exhibiting both adsorption and collapse 
transitions. The new fixed-points of interest are (i) the ordinary-@ fixed-point, which 
governs the behaviour on the 0 line for Q < Q F ' s P ,  and (ii) the special-@ fixed-point, 
which describes the adsorption transition of a 0 polymer. Both have analogues in the 
tricritical O(n) model in the limit n - 0 [30,33]. 

Duplantier and Saleur have calculated exponents for a SAW with nearest-neighbour 
interactions and a special subset of next-nearest-neighbour interactions in two dimen- 
sions using Coulomb gas methods [NI. They found the bulk tricritical exponents 

Y" =4/7 0'' = 317 yo' = 8f7 (40) 
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P 

Figure 9.  The fraction of bonds at the critical fugacity, ( N e ) L  1 (N), , .  for strips of 
width L = 4 , 5 , 6  and 7 at difleraent values of Q. For small values of Q,  the variation 
with P is continuous, while for larger Q the cur-yes suggest a discontinuous change 
at the unbinding transition in the thermodynamic limit. 

Figure 10. Estimates of the line Q2 (P) obtained from equations (38) and (39). 
For J'? 1.6, the data show severe parity and finitesize effects. but the results for 

parmeter space. 
sirips of 0;; parity appee- io iioss over fro23 the adso;-;.im tn the B E x  k the 

and the ordinary surface exponents 

(41) $"Ord 0 ys Q',Ord = 213, 

The notation 0' distinguishes this point from the 0 point where conventionally only 
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nearest-neighhour interactions are included. The question of whether the 0 and 0' 
points are in the same universality class has been a subject of debate 135-381 and has 
stimulated new numerical work [14,39-411. Numerical evidence appears to show that  
the bulk exponents at  the two points are the same. However, a study of the ordinary 
surface exponents at  the 0 point by Sen0 and Stella [14,38] revealed differences with 
the predictions of Duplantier and Saleur. 

Sen0 and Stella performed Monte Carlo enumerations of the number of SAW at- 
tached to a free surface. At the @ point they found y:,Ord = 0.57 i 0.08 and 
yZord = -0.53 i 0.10, compared with the values y1 - 417 
for the 0' point. From 'plausible assumptions' about the underlying conformal field 
theory (criticized in [38,40]), they then conjectured the exact result 

Q',Ord - Q',Oid - - 817 and yI1 

q o r d  = 2 in two dimensions. (42) 

We also note that Burkhardt and Cardy 1421 have given heuristic arguments to show 
that x$ = d at  an ordinary transition. Under rather general assumptions they also 
derived the result xz = 2 in two dimensions using conformal invariance. This suggests 
that 

(43) ? p r d  = -1 in two dimensions 

which is at  variance with the value at  the 0' point, (41). 
To locate the ordinary-@ fixed-point, we followed the loci of the ordinary and 

0 fixed-points in the parameter space, assuming that the curves would cross at  the 
ordinary-@ fixed-point. Of course, this method i s  far from satisfactory, but we were 
not able to generate transfer matrices for enough strip widths to uniquely define the 
fixed-point, for exampie, from the solution of a set of three-parameter renormaiizatiou 
equations. 

Estimates of the coordinates of the ordinary line, Kt ( P )  and Q i  ( P ) ,  follow from 
the solutions of the three-strip renormalieation equations (equations (26) of section 3) 
but with strip widths of the same parity (i.e. L, L - 2 , L  - 4). Q t  ( P )  is shown in 
figure l l (a) .  Estimates of the coordinates of the 0 line, Iiz (Q)  and 5 (Q), were 
obtained from the solutions of the two-length, two-strip renormalization equations 
(compare (38) and (39)) 

L-'tkl (Q) I PL (&)I = ( L  - 2)-'tk!2 [G (Q) , f'L (&)I 
L-lEk2 [K? (Q) , P; (Q)] = ( L  - 2)- 1 F i - z  II 2 [ I(* L (9) I % ( & ) I .  

(44) 

(45) 

e(&) has been superimposed onto the graph in figure l l ( a ) .  From the graph, we 
estimate the coordinates of the crossing point as 

( P , ~ o r d , Q ~ O r d )  = (1.95 i 0.05,0.3+0.1). (46) 

The value of P p , O r d  is in good agreement with the Monte Carlo estimate of Meirovitch 
and Lim [41], P, = 1.93 i 0.01, for the bulk 0 point. 

In principle, estimates of the surface scaling dimensions at  the ordinary-O fixed- 
point now follow from the amplitudes of the correlation lengths. Figure l l (b )  shows 
the correlation length amplitude along the ordinary line 
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Figure 11. (a) Finite-size estimates of thelines of fixed-points in the criticalsurface, 
IC = h'* (P,  Q), projected onto the ( P ,  Q) plane. The lines of ordinary fixdpoink, 
Q: ( P ) ,  and the lines of Q fixed-points, PL (4). are labelled Ord and 0, respectively. 
Each line is marked by the largest strip width used in the phenomenologhl renor- 
malization calculation of its coordinates. (a) The correlation length amplitude along 
the ordinary line, A i  ( P ) .  ( e )  The correlation length amplitudes on the tricritical 0 
line, A i  (Q), for i = 1 and ( d )  the same for i = 2.  

Although the curves do not cross, from the value of P:,Ord we estimate AZ(P?,Ord) = 
2.Ok 0.1. Figures l l ( c )  and ( d )  show the amplitudes along the 0 line 

for i = 1 and 2. The curves in figure ll(c) cross at Q - 0.2 and the values of A i  (Q) 
at  the crossing-point and at  Q;sord are consistent with the estimate Ai(QF,Ord) = 
2.0 k 0.1. The curves in figure l l (d)  also cross, a t  Q - 0.5, and the values of A i  (Q) 
at  the crossing-point and at  Q;aord suggest that AZ(QZ'ord) = 3.8k 0.2. 

Our results therefore suggest the values 

'111 @lord = 2.0 f 0.1 z; = 1.9LkO.l (49) 

at the ordinary-0 fixed-point, which supports the conjecture of Seno and Stella (42) 
and agrees with the general result = 2 at  an ordinary transition. However, the 
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apparent strong agreement with expected values may be fortuitous and we hope t o  
stimulate further work, perhaps using conformal invariance techniques. 

A similar attempt to locate the special-@ fixed-point, by following the loci of the 
special and 0 fixed-points in the parameter space, was not successful. Distortions in 
the crossover trajectories were very pronounced, as is evident from figure 10, and it 
proved impossible to interpret the finite-size data [43]. 

A R Veal e t  a/ 

6. Discussion and conclusions 

In summary, we have used the transfer matrix technique to study a lattice model of 
polymer adsorption and collapse. We have considered the standard model of a self- 
avoiding walk with adsorbing boundaries and introduced attractive nearest-neighbour 
interactions. The numerical results show the existence of a multicritical point where 
the adsorption and collapse transitions coincide. There is also clear evidence that 
the collapse transition lowers the adsorption temperature and that the order of the 
adsorption transition changes from second to first order as the monomer-monomer in- 
teractions increase in strength. The resulting phase diagram, shown schematically in 
figure 5, agrees qualitatively with that of Bouchaud and Vannimenus [9] who performed 
real-space renormalization calculations for a polymer model incorporating surface ad- 
sorption and attractive interactions on the three-dimensional Sierpinski gasket. 

The universality class of a polymer chain at  the 0 point in two dimensions has 
been much debated following the determination of the exact tricritical exponents a t  
the 0' point by Duplantier and Saleur [34]. The point at issue is whether or not 
the appealing geometrical model studied by Duplantier and Saleur, which has both 
nearest-neighbour and a special subset of next-nearest-neighbour interactions, is in the 
same universality class as the standard model with only nearest-neighbour interactions. 
To investigate this point, we have studied the amplitudes of the correlation lengths for 
one and two polymers a t  the ordinary-@ fixed-point. The resulting estimates of the 
surface scaling dimensions support the recent conjecture of Sen0 and Stella [14,38] that 
the surface critical behaviour a t  the 0 and 0' points is different and that $'Ord = 2. 

The surface critical behaviour a t  the collapse-adsorption multicritical point is very 
interesting. Unfortunately, phenomenological renormalization calculations proved ex- 
tremely difficult to perform because of strong parity and finitesize effects and we 
were unable to give reliable estimates of the critical exponents a t  the special-0 fixed- 
point. Diehl and Eiseuriegler [30] have calculated expressions for the surface critical 
exponents a t  the special fixed-point of the tricritical O(n) model using sophisticated 
field-theoretic techniques; putting n = 0 into the c = 3 - d expansions gives the ex- 
ponents for a 0 polymer a t  the collapse-adsorption multicritical point. However, the 
expansions converge poorly and are not expected a priori to give reliable estimates 
when c = 1. We hope that further progress may be made using conformal invariance 
and related techniques. 

In vicw of the inherent difficulties with transfer matrix calculations for the self- 
avoiding walk model a t  the 0 point, we went on to study a much simpler direcled model 
which also exhibits both adsorption and collapse transitions [lo]. Directed models of 
polymer adsorption have been studied in detail by Privman and cwworkers [44,45] 
and may be of some physical interest when polymer adsorption takes place in the 
presence of shear flow parallel to the surface. In fact, the directed model of polymer 
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adsorption may be solved analytically [45] and the finite-size scaling properties of the 
model in the strip geometry can be calculated [10,46]. 

If attractive nearest-neighbour interactions are introduced, a full analytic treat- 
ment of the model is no longer possible. However, a numerical transfer-matrix study 
[lo] proved a great deal easier than in the case of the isotropic self-avoiding walk be- 
cause of the possibility of probing large strip widths ( L  5 50) and the regular conver- 
gence of the results with increasing L.  The results revealed the same generic features 
as the modei we have studied in this articie: (ij there is a muiticriticai point where 
the adsorption and collapse transitions coincide, and (ii) the adsorption transition is 
second order above the collapse-@ temperature and first order below. 

We found that the position of the adsorption transition could be estimated from the 
point where the finite-size critical fugacity curves cross. Furthermore, the numerical 
study obtained results for the position of the multicritical point of the directed model 
that  were independent or' i. The ezaci vaiues or' the thermodynamic parameters ai 
this multicritical point have subsequently been calculated [47]. 

Although the simple directed model shows the same general behaviour as the 
isotropic self-avoiding walk model, we have proved analytically that there is no en- 
hancement of the 0 temperature in the presence of an adsorbing surface [10,47]. This 
may be due to the anisotropic nature of the collapse transition of the directed poly- 

whether or not a shift in 0 is present in more realistic models. A parallel study 
of a related geometrical model of polymer collapse [13] did show a surface-induced 
stabilization of the collapsed phase near the multicritical point in the phase diagram. 
Unfortunately, the results of section 4 are not sufficiently accurate to resolve this point 
for the self-avoiding walk model. 

x u . .  hn..- 6 h - b  thnln ..-..Ito ... : I 1  &:-..lqln F..-+ha. th.n-.nt;*-l ...-. L n.,,hlnmo 
I,= '."pC I I I ( I Y  UL,C.,C L r U U l Y U  w111 D Y L l l l U L n Y C  L Y L Y l l r l  U,,CU,C".~(ILI .,"Ln "I. pL""'C.1." 

involving strongly interacting polymers a t  interfaces. The recent simulation studies of 
Sen0 and Stella [14] and Meirovitch and Lim [41] of the twedimensional self-avoiding 
walk model a t  the 0 point, both in the bulk and at a free surface, have given very 
precise results. Large-scale Monte Carlo simulations of the model a t  an adsorbing sur- 
face, developing the earlier work of Eiseuriegler, Binder and Kremer [19] for polymers 
_I_.i Ihnw t.he -..- @ point., might he &!e to answer det.ai!ed questions ahoct the en]:ancemen! 
of the 8 temperature and the critical exponent values a t  the collapseadsorption mul- 
ticritical point in both two and three dimensions. Van Dieren and Kremer's study (481 
of a simplified three-dimensional model of adsorption at  the 0 point offers a promising 
start  in this direction. 

niers, Bowever, One Vf the iiioji interesting quesiions of p:ryjiea; interest rem&iij 
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